California Energy Commission 2005 Energy Report Committee Third Workshop on the Water-Energy Relationship Staff Paper

June 21, 2005

Study Purpose

For the Energy Commission Portion:

- To Accurately Assess Energy Demand in Water Sector
- To Explore Potential to Reduce On-Peak and Total Electric Demand through Water System Conservation, Efficiency and Electric Generation
- To Develop Tools and Programs for Planners, Water Agencies and Companies to Address Energy Needs of New and Existing Systems

Water Energy Relationship Questions

Are the energy requirements for water storage, statewide or regional conveyance, supply treatment, local delivery, primary end-use, and wastewater treatment and disposal adequately described? If not, what is missing?

Present Demand in Water Sector?

Water Supply

11,953 GWh

Includes all pumping for conveyance and distribution

Treatment

1,388 GWh

Includes treatment to potable standards, sewage and watewater treatment, and disposal

End-Use

12,482 GWh

Irrigation Pumping

2,269 GWh

DATE: 6/05

SOURCE: California Energy Commission

Disparity in Ag Estimates

- Others' Estimates of Ag Energy Use as Much as Four Times Higher than CEC's Estimate
- Some Difference Accounted for in Other Categories (see DAO Chart)
- CEC's Estimate Likely Underestimates Groundwater Pumping
- Ag Water Use Trends Shift Unpredictably Due to Changes in Crops

Ag Sector Energy Use Patterns

- Though Ag Energy Demand May be Low, Peak Power Demand May be High
- Ag Sector Pumping Limited to 6 Months Per Year, and Most Intensive in June-August
- Accounts for As Much as 4,500 MW On-Peak in Peak Months
- Limited Ability to Shift Off-Peak Because of Irrigation System Limitations

Ag Sector Net Effect

- Will Ag Sector Energy Efficiency and Land Idling Programs Offset Crop Pattern Changes?
- Will Push Towards Drip Irrigation Continue, and Will It Cause Increase in Groundwater Pumping?
- Will Electrification Significantly Increase Ag Sector Energy and Power Demand?

Water Energy Relationship Questions

Does the report properly portray the context of how California's water development, treatment, and use will change in the future and how these changes might affect energy demand?

Potential Water Sector Electricity Demand Increases by 2015

Cause

More Stringent Treatment Water Market Transactions Conjunctive Use Pumping

Increased Drip Irrigation
Recycled Water System Development
Desalination Facility Development

Increase

At least 1,400 GWh Perhaps 2,000 GWh 1,300 MW, and 3,450 GWh Perhaps 1,900 GWh Easily 6,000 GWh About 2,150 GWh

Total

DATE: 6/05

SOURCE: California Energy Commission

16,900 GWh

Typical Energy Use In Water & Wastewater Treatment

Treatment Plant 6. Recycled **Start Lake** 3. Pumps to = 1050 kWh/MGUsers **Water Pumping Distribution System** ? kWh/MG =1150 kWh/MG1. Pumps to Plant 4. Pumps to Plant =100 kWh/MG2. Water Treatment Plant

	Step 1	Step 2	Step 3	Step 4	Step 5
Accumulating Total	100kWh/MG	350kWh/MG	1500kWh/MG	1650kWh/MG	2700kWh/MG

=150kWh/MG

Source: EPRI 1998

=250kWh/MG

End River

5. Wastewater

Urban Water Agency Energy Use by Sector (kWh/MG)

Conveyance: 0 - 10,000 kWh/MG

Treatment: 100 - 5,000 kWh/MG

Distribution: 0 - 1,200 kWh/MG

Wastewater pumping: 0 - 400 kWh/MG

Wastewater treatment: 1,000 - 3,500 kWh/MG

Total:

1,100 - 20,100 kWh/MG

DATE: 6/05

SOURCE: California Energy Commission

Water Sector Energy Use Regional Use (kWh/MG)

(SoCal) (NorCal)

Water Supply 5,757 454

Distribution 672 686

Wastewater 2,001 2,001

Total 8,430 3,141

Water Energy Relationship Questions

What actions can be taken to improve the effectiveness of existing water and energy sector programs, such as conservation, efficiency and forecasting programs, as well as to assist water management agencies to use energy more efficiently or aid in fostering more efficient and effective use of California's water resources?

Water Sector Energy Use

For West Basin MWD (kWh/MG)

Imported Water

SWP 9,000 Colorado River 6,000

Groundwater

Replenished with Recycled Water 1,500
Replenished with SWP Water 10,500
Replenished with CR Water 7,500

Recycled Water 1,500 – 3,900

SW Desalination (estimated) 13,400

Potential Solutions to Potential Shortage

- Water Conservation
 - Careful Planning Required, as Some Water
 Conservation Programs Increase Energy Use
- Water System Peak Load Reduction (TOU Rates, Storage/Pump Management)
- Market Transactions to Reduce Long-Distance Pumping (Exchanges, etc.)
- Water System Generation

Questions? More Information?

For all Questions or Requests for More Information Concerning the Water-Energy Relationship Staff Paper, Please Contact: Matt Trask, WER Study Project Manager 916-654-4067 mtrask@energy.state.ca.us

Energy Commission Contacts

Shahid Chaudhry, Water/Wastewater Treatment 916-654-4858 schaudhr@energy.state.ca.us Martha Brook, Water/Energy End-Use 916-654-4086 mbrook@energy.state.ca.us Joe O'Hagan, Water/Energy Environmental 916-653-1651 johagan@energy.state.ca.us Ricardo Amon, Energy & Agriculture ramon@energy.state.ca.us 916-654-4019 Bill Pennington, Building & Appliance Standards 916-654-4939 bpenning@energy.state.ca.us

